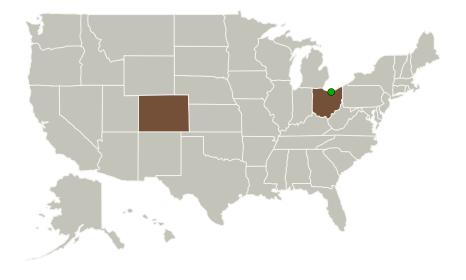
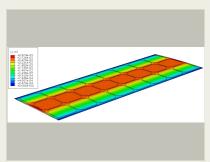
Composite Blanket Elements for CTA, Phase I

NASA

Completed Technology Project (2018 - 2019)

Project Introduction


Opterus Research and Development, Inc. proposes to develop solar array blanket technologies suitable for solar electric propulsion (SEP) missions. The technologies will address NASA's needs for increased power, modularity to reduce cost, high voltage operation, and operation in a SEP environment. The work will further enable high reliability and compact stowage in a design that provides sufficient stiffness to minimize adverse spacecraft dynamics issues.


Anticipated Benefits

The proposed technologies are applicable to all blanket solar arrays. Blanket solar arrays have emerged as the leading contender for moderate to high-power missions and even low power missions due to their mass efficiency and small stowed volume. NASA has several missions under consideration that use electric propulsion and require high power solar arrays. It is a key technology for NASA's long-term Mars objectives, both getting to Mars with SEP and providing power as a Mars surface solar array.

The proposed technologies are applicable to a broad range of non-NASA missions. GEO communications and radar platforms require power levels exceeding 20 kW and blanket solar arrays are often considered. Other than the specializations required for SEP, the requirements for the proposed technologies overlap with the needs of high power communications system. Both systems require high reliability, compact stowage, low cost, and light weight

Primary U.S. Work Locations and Key Partners

Composite Blanket Elements for CTA, Phase I

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

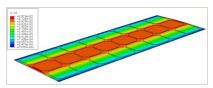
Composite Blanket Elements for CTA, Phase I

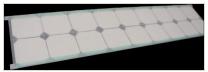
Completed Technology Project (2018 - 2019)

Organizations Performing Work	Role	Туре	Location
Opterus Research and Development, Inc.	Lead Organization	Industry	Fort Collins, Colorado
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Colorado	Ohio

Project Transitions


July 2018: Project Start


Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140983)

Images

Briefing Chart Image Composite Blanket Elements for CTA, Phase I (https://techport.nasa.gov/imag e/129690)

Final Summary Chart Image Composite Blanket Elements for CTA, Phase I (https://techport.nasa.gov/imag e/128075)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Opterus Research and Development, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

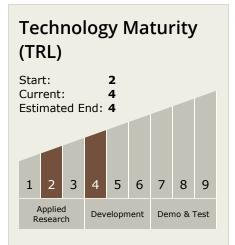
Program Manager:

Carlos Torrez

Principal Investigator:

Thomas Murphey

Co-Investigator:


Thomas Murphey

Composite Blanket Elements for CTA, Phase I

Completed Technology Project (2018 - 2019)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic

Target Destinations

The Moon, Mars

